Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Learn Mem ; 28(10): 390-399, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34526383

RESUMO

Reducing sensory experiences during the period that immediately follows learning improves long-term memory retention in healthy humans, and even preserves memory in patients with amnesia. To date, it is entirely unclear why this is the case, and identifying the neurobiological mechanisms underpinning this effect requires suitable animal models, which are currently lacking. Here, we describe a straightforward experimental procedure in rats that future studies can use to directly address this issue. Using this method, we replicated the central findings on quiet wakefulness obtained in humans: We show that rats that spent 1 h alone in a familiar dark and quiet chamber (the Black Box) after exploring two objects in an open field expressed long-term memory for the object locations 6 h later, while rats that instead directly went back into their home cage with their cage mates did not. We discovered that both visual stimulation and being together with conspecifics contributed to the memory loss in the home cage, as exposing rats either to light or to a cage mate in the Black Box was sufficient to disrupt memory for object locations. Our results suggest that in both rats and humans, everyday sensory experiences that normally follow learning in natural settings can interfere with processes that promote long-term memory retention, thereby causing forgetting in form of retroactive interference. The processes involved in this effect are not sleep-dependent because we prevented sleep in periods of reduced sensory experience. Our findings, which also have implications for research practices, describe a potentially useful method to study the neurobiological mechanisms that might explain why normal sensory processing after learning impairs memory both in healthy humans and in patients suffering from amnesia.


Assuntos
Memória de Longo Prazo , Reconhecimento Psicológico , Animais , Humanos , Aprendizagem , Memória , Ratos , Sono
2.
Proc Natl Acad Sci U S A ; 114(21): 5515-5520, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484016

RESUMO

Existing assays of social interaction are suboptimal, and none measures propinquity, the tendency of rodents to maintain close physical proximity. These assays are ubiquitously performed using inbred mouse strains and mutations placed on inbred genetic backgrounds. We developed the automatable tube cooccupancy test (TCOT) based on propinquity, the tendency of freely mobile rodents to maintain close physical proximity, and assessed TCOT behavior on a variety of genotypes and social and environmental conditions. In outbred mice and rats, familiarity determined willingness to cooccupy the tube, with siblings and/or cagemates of both sexes exhibiting higher cooccupancy behavior than strangers. Subsequent testing using multiple genotypes revealed that inbred strain siblings do not cooccupy at higher rates than strangers, in marked contrast to both outbred and rederived wild mice. Mutant mouse strains with "autistic-like" phenotypes (Fmr1-/y and Eif4e Ser209Ala) displayed significantly decreased cooccupancy.


Assuntos
Endogamia , Comportamento Social , Animais , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos , Ratos Sprague-Dawley , Estresse Psicológico
3.
Nat Med ; 23(6): 674-677, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28504725

RESUMO

Fragile X syndrome (FXS) is the leading monogenic cause of autism spectrum disorders (ASD). Trinucleotide repeat expansions in FMR1 abolish FMRP expression, leading to hyperactivation of ERK and mTOR signaling upstream of mRNA translation. Here we show that metformin, the most widely used drug for type 2 diabetes, rescues core phenotypes in Fmr1-/y mice and selectively normalizes ERK signaling, eIF4E phosphorylation and the expression of MMP-9. Thus, metformin is a potential FXS therapeutic.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Hipoglicemiantes/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metformina/farmacologia , Comportamento Social , Animais , Modelos Animais de Doenças , Fator de Iniciação 4E em Eucariotos/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...